
www.elsevier.com/locate/jcp

Journal of Computational Physics 194 (2004) 481–504
Perfectly matched layers for radio wave propagation
in inhomogeneous magnetized plasmas

Natalia A. Gondarenko a,*,1, Parvez N. Guzdar a, Sidney L. Ossakow b,
Paul A. Bernhardt b

a Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742-3511, USA
b Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346, USA

Received 8 January 2003; received in revised form 1 September 2003; accepted 5 September 2003
Abstract

We present 1D and 2D numerical models of the propagation of high-frequency (HF) radio waves in inhomogeneous

magnetized plasmas. The simulations allow one to describe the process of linear conversion of HF electromagnetic

waves into electrostatic waves. The waves, launched from the lower boundary normally or at a specified angle on a layer

of a magnetoactive plasma, can undergo linear conversion of the incident O-mode into a Z-mode at appropriate lo-

cations in an inhomogeneous prescribed plasma density. The numerical scheme for solving 2D HF wave propagation

equations is described. The model employed the Maxwellian perfectly matched layers (PML) technique for approxi-

mating nonreflecting boundary conditions. Our numerical studies demonstrate the effectiveness of the PML technique

for transparent boundary conditions for an open-domain problem.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

The modelling of radio wave propagation in inhomogeneous ionospheric plasmas is of the great im-

portance in a number of ionospheric experiments relevant to communication, radar and navigation sys-

tems. Many practical problems of the interaction of HF radio waves in the ionosphere involve the study of
the structure and the amplitude of the fields near reflection or resonance regions. The density irregularities

can significantly affect radio wave propagation [1]. At the lower altitudes of the ionosphere, the E region,

the 2D images of sporadic-E layers have been produced with radio-induced fluorescence (RIF) technique

[2,3]. Bernhardt has developed a theory to explain the generation of the structures in the RIF images in-

terpreted as modulation in the ion-layer densities [4]. In our numerical experiments, we use the 2D electron
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density profile, which is an approximation of the electron density of sporadic-E layer obtained from nu-

merical computations of the modulation of the ion-layers by the Kelvin–Helmholtz instability in the neutral

atmosphere [4].
In ionospheric modification experiments, the evolution of the electron density affects the propagation of

HF radio waves and therefore it is necessary to find solutions of the electromagnetic fields varying slowly on

the time scale of the density evolution. These ionospheric modification experiments investigated nonlinear

effects in the ionosphere, as an example, the excitation of irregularities in the ionosphere by radio wave

heating, which has been attributed to the thermal self-focusing instability (SFI). The first 2D model of the

thermal SFI by Bernhardt and Duncan [5] was for underdense plasmas, where the instability is convective

in character. Guzdar et al. [6] and Gondarenko et al. [7] simulated the propagation of HF radio waves in an

inhomogeneous gyrotropic medium near the reflection height, where the thermal SFI is an absolute in-
stability. They used a simplified model by assuming that the wave was incident normally and propagated

vertically along the magnetic field and the direction of inhomogeneity.

Numerical modelling of the propagation of radio waves in anisotropic inhomogeneous ionospheric

plasmas requires solving the time-dependent Maxwell�s equations in a computational domain with perfectly

conducting boundaries. In many radio wave propagation investigations, only one boundary of the calcu-

lation domain (usually the lower one) is a physical boundary, and the upper boundary must be perfectly

transparent. For the 2D case, the side boundaries can also be transparent allowing for the waves to

propagate out of the computational domain through them. It is a known fact that such nonreflecting
boundaries can cause significant numerical challenges in computations and, if not implemented correctly,

can lead to spurious results.

In the earliest implementations of nonreflecting boundaries, the standard approach was to use absorbing

layers above the physical computational region. In these layers, the numerical solution is damped by the

application of filters or other numerical damping techniques [8,9]. Even though with this method of energy

absorption in real space one can achieve satisfactory results in reducing the reflection coefficients, for many

wave propagation problems this method becomes very expensive in computational cost since it requires a

significant increase in the size of the calculation domain.
Another type of widely accepted method for a nonreflecting boundary is based on perfectly matched

layers (PMLs), and was first introduced by Berenger [10]. The new matched medium (called perfectly

matched) was designed so that the theoretical reflection factor of a plane wave propagating through the

interface between the physical domain and the new computational layer is zero at any frequency and at any

angle of incidence. This method requires a small number of grid points in order to achieve satisfactory

results. The energy of the outgoing wave is absorbed within the PML region where the fields exponentially

decay, and this can reduce the reflection coefficient for any angle of incidence [11]. The reflectionless

properties of PML are discussed in detail by Chew and Weedon [12]. They showed that the PML could be
related to a complex stretching of the Cartesian coordinates in the frequency domain. This method of

implementation of nonreflecting boundary conditions is referred to as the Maxwellian PML. In the Ber-

enger implementation of the PML technique for the numerical solution of the unbounded electromagnetic

problems with a finite-difference time-domain method, the electromagnetic fields in the equations were split

into subcomponents. Thus with the introduction of additional equations for the subcomponents of the

fields, which do not satisfy Maxwell�s equations, a new set of equations have to be solved. This is the so-

called non-Maxwellian version of PML. An unsplit-field implementation of PML requires solving the

Maxwell�s equations derived by modifying the medium with complex anisotropic permittivity tensor
[13,14], so that the new normalized fields obey the Maxwell�s equations. In this paper, we use the Max-

wellian formulation of PML.

The numerical scheme applied for our simulations is based on the implicit Crank–Nicholson finite-

difference (FD) scheme. The implementation of this type of scheme permits the modelling of arbitrary

boundary conditions. In the 1D case, we use the so-called Thomas algorithm for solving tridiagonal system



N.A. Gondarenko et al. / Journal of Computational Physics 194 (2004) 481–504 483
of linear equations, which arise from the implicit finite-difference approximation of the 1D scalar equations.

The stability of this type of algorithms and their modifications are described by Godunov and Ryabenkii

[15], Isaacson and Keller [16], Richtmyer and Morton [17]. For the solution of FD 1D vector equations we
use algorithms discussed by Isaacson and Keller [16] and Samarskii [18]. Finite-difference equations for a

vector model in two dimensions are solved with the alternating direction implicit (ADI) method. The ADI

methods for solving the parabolic and elliptic partial differential equations (PDEs) in 2D space were first

developed by Peaceman and Rachford [19], Douglas and Rachford [20]. Later, McKee and Mitchell [21]

included a mixed cross-derivative term in the 2D parabolic PDEs.

In Section 1 of this paper, we discuss the computational models arising in the simulations of radio wave

propagation in the ionospheric plasmas. In Section 2, for the general case when a wave is incident obliquely

on a plane layer of cold magnetoactive plasma, the system of equations and the dispersion equation rep-
resenting the four modes of the wave propagation are presented. The implementation of the Maxwellian

formulation of the PML technique is discussed in Section 3. In Section 4, we introduce the boundary

conditions that account for the amplitude and the phase of the upward going wave. In the following

Sections 5 and 6, the algorithms for the scalar and vector equations for the wave propagation in inho-

mogeneous isotropic and magnetized plasmas are described. In Section 7, the composite scheme for solving

2D vector equations with complex coefficients is derived. Finally, in Sections 8 and 9, we present the nu-

merical examples of radio wave propagation for 1D and 2D inhomogeneous density profiles, demonstrating

the effectiveness of the PML technique. Section 10 has the concluding remarks.
2. Basic wave propagation equations

Let us consider the problem of the HF radio wave propagation in the ionosphere. To describe elec-

tromagnetic fields we shall use the averaged values of the electric and magnetic fields. In wave propagation

in the ionosphere, the plasma field wavelengths are large compared with the mean distance between par-

ticles so that the statistical averaging is equivalent to averaging over a sufficiently small volume. For
monochromatic fields ~Eðr; tÞ ¼ ~EðrÞe�ixt, the statistically averaged field equations (Maxwell�s curl equa-

tions) are the following:

r� ~H ¼ 4p
c
~j� i

x
c
~D; ð1Þ
r�~E ¼ i
x
c
~H ; ð2Þ

where ~E is the electric field, ~H is the magnetic field, ~D is the electric field displacement, and~j is the induced
current density. ~D and~j related to ~E through the hermitian tensors eij and rij:

Di ¼ eijEj; ji ¼ rijEj:

Here spatial dispersion is neglected, so that relation between ~D and~j and ~E is local. Finally, taking the curl

of Eq. (1) and using Eq. (2), we derived the wave equations for the electromagnetic waves for a ‘‘cold’’

plasma medium [23]:

�r2~E þ ~rðr �~EÞ ¼ x2

c2
~D
�

þ i
4p
x
~j
�
;

Di þ i
4p
x

ji ¼ e0ijEj;

ð3Þ
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where e0ijðxÞ ¼ eijðxÞ þ i 4px rijðxÞ is the complex permittivity tensor describing electromagnetic properties of

a plasma in a magnetic field, rij is the conductivity tensor. In the coordinate system we have used, the z-axis
is along the density gradient, and the magnetic field H ð0Þ is in the xz-plane (the plane of magnetic meridian).
The magnetic field makes an angle a with the z-axis, and in the case of normal incidence, the HF radio wave

is launched vertically upward (parallel to the z-axis).
Let us consider propagation of a plane wave ~E ¼ ~E0e

ið�xtþ~k�rÞ, where ~k is the wave vector. For homo-

geneous plane waves, the planes of equal phase and amplitude coincide, and k ¼ x
c ðn� ilÞ, where n and l

are the indices of refraction and absorption, respectively. Then, Eq. (3) becomes

~D
�

þ i
4p
x
~j
�

¼ ðn� ilÞ2ð~E �~sð~s �~EÞÞ � ðn� ilÞ2ð~E �~kð~k �~EÞ=k2Þ;

where~s ¼~k=k is a real unit vector. This matrix equation can be solved to determine the dispersion relation

for modes in a homogeneous magnetized plasma. In the case of a 1D inhomogeneous plasma (when per-

mittivity depends only on height, the z-coordinate) for oblique incidence, when a wave is launched at a finite

angle h0 , we can use the Eikonal representation ~E ¼ ~E0e
�ixtþixðp0xþwðzÞÞ=c for the wave. The ‘‘local’’ wave

vector in the plane of the magnetic meridian is ~k ¼ x
c ðp0; 0; qÞ, where p0 ¼ c

x kx ¼ sin h0, and q ¼ ðdw=dzÞ.
Thus for this case,

ðdw=dzÞ2 þ p20 ¼ ðn� ilÞ2;

which leads to a quartic equation for q ¼ dw=dz [23]:

aq4 þ bq3 þ cq2 þ dqþ d ¼ 0: ð4Þ

The solution of this dispersion equation represents the four modes of the wave propagation, namely, the

upward and the downward propagating ordinary O-mode and the extraordinary X -mode. An O-mode,

launched from the lower boundary, can be reflected at a plasma cutoff with the wave frequency equal to the

plasma frequency at a certain height. For oblique propagation, the O-mode can be converted into the

second branch of the extraordinary (X ) mode, which in the ionospheric context is referred to as the Z-mode
[24,25]. The extraordinary Z-mode is reflected at another cutoff and then it propagates to a plasma reso-

nance region where it is converted into an electrostatic mode.

Finally, for the general case of a 2D problem (the permittivity is a function of both x and z coordinates),
the basic equations for the electromagnetic wave propagating in a cold magnetoactive plasma are [23]:

� o2Ex

oz2
þ o

ox

�
þ ikx0

�
oEz

oz
� x2

c2
exxEx

�
þ exyEy þ exzEz

�
¼ 0; ð5Þ
� o2Ey

oz2
þ o

ox

�
þ ikx0

�2

Ey �
x2

c2
eyxEx

�
þ eyyEy þ eyzEz

�
¼ 0; ð6Þ
o

ox

�
þ ikx0

�2

Ez þ
o

ox

�
þ ikx0

�
oEx

oz
� x2

c2
ezxEx

�
þ ezyEy þ ezzEz

�
¼ 0; ð7Þ

where kx0 ¼ xp0=c is the x component of the wave vector at the lower boundary on which the incident wave

is specified. Thus again the quartic equation (4) can be used at the lower boundary to determine the values

of q relevant to the appropriate mode (O or X ) of propagation.

In the next two sections we will discuss the discrete representations and the numerical algorithms to solve

Eqs. (5)–(7) with nonreflecting PML boundary conditions for the 1D and 2D cases.
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3. Perfectly matched layer implementation

In order to provide the nonreflecting boundary condition for an open-domain problem, a thin ‘‘absorb-
ing’’ layer called the PML layer is added to the calculation domain above the height zpml (in z-direction),
separating the given medium and an artificial absorbing medium. In the following development, Eqs. (5)–(7)

for the wave propagation are solved in the computation domain including the PML layer. In contrast to

Berenger�s implementation of PML [10], the field components are unsplit in the entire calculation area.

Our implementation of the PML technique is similar to the one that has been used more recently for

many computational problems [12–14]. Thus following this technique, Eqs. (5)–(7) are modified with a new

set of complex stretching variables. The final solutions for the field components of Eqs. (5)–(7) are un-

changed in the non-PML region of the computational domain and the solutions are evanescent in the thin
PML layer. The new complex coordinates are defined as

~n ¼ nþ i

Z n

0

cðn0Þdn0;

where n is in the vertical z-direction (for our specific case), cðnÞ > 0 within the PML medium above the

height zpml, and it is zero in the non-PML regions of the computation domain. The large imaginary

component of the cðnÞ profile provides a fast absorption of the energy in the PML region with respect to the

length of the absorbing layer. The function cðnÞ plays a role of a damping factor and it depends on the
frequency x, c ¼ rE=xe0 ¼ rM=xl0, where rE and rM are the electric and the magnetic conductivities

satisfying the matching impedance condition [10].

In the general case with a new set of complex coordinates, the operator nabla in Eq. (3) is the following:

~r ¼ x̂
o

o~x
þ ŷ

o

o~y
þ ẑ

o

o~z
;

where for the 2D example,

o

o~z
¼ 1

1þ iczðzÞ
o

oz
;

o

o~x
¼ 1

1þ icxðxÞ
o

ox
:

To formalize the transformation of the equation with the stretched coordinate we introduce the diagonal

tensor ~S and the transformed complex permittivity tensor ~epml [26,27]

~S ¼

1
sx

0 0

0 1
sy

0

0 0 1
sz

2
64

3
75; ~epml ¼ detð~SÞ�1ð~S � e � ~SÞ ¼

sy sz
sx
exx szexy syexz

szeyx sxsz
sy
eyy sxeyz

syezx sxezy
sxsy
sz
ezz

2
64

3
75;

where the complex stretching variables sx ¼ 1þ icxðxÞ, sz ¼ 1þ iczðzÞ, and sy ¼ 1 for our 2D case. The

electric field components also should be transformed because in the complex space they are not Maxwellian,

so that
~~E ! ~S�1 �~E. Now

~~E is the electric field vector in the real space domain and satisfies the Maxwell

equations with the transformed permittivity tensor ~epml. As would be expected, the new fields
~~E represent

the absorbing behavior inside the PML layer and coincide with the original field solution of Eqs. (5)–(7) in

the non-PML calculation domain.
4. Boundary conditions

In our calculation, the intensity of the incident radiation is given at the lower boundary for the 2D case

or at the left boundary in the 1D case.



486 N.A. Gondarenko et al. / Journal of Computational Physics 194 (2004) 481–504
For the case of 1D wave propagation in an unmagnetized inhomogeneous plasma when a wave is in-

cident normally, the plane wave solution of Eqs. (5)–(7) can be considered in the form E0e
ikz�ixt with the

amplitude E0. The solution of Eqs. (5)–(7) gives the dispersion relation and from this dispersion relation one
can obtain the wave number k at the lower boundary

k ¼ � 1

c
x2
�

� x2
peðz ¼ 0Þ

�1=2
; ð8Þ

where xpe is the plasma frequency.

Let us consider the incident intensity at the left boundary, z ¼ 0, as a sum of Eþ and E�, the amplitudes

of the upward and the downward propagating waves, respectively:

E ¼ Êþe
ikz þ Ê�e

�ikz: ð9Þ

Since the amplitude of the downward propagating wave is unknown, the elimination of E� from both (9),

and its differentiation over z, yields the expression for the boundary condition at z ¼ 0, namely

oE
oz

����
z¼0

þ ikE

����
z¼0

¼ 2ikÊþ; ð10Þ

where k is the wave number for the incident upward propagating wave. For this specific case, k is given by

Eq. (8). In the anisotropic case, the amplitude of the electromagnetic wave is determined by the ordinary
and extraordinary modes. For the general case, when the wave is incident obliquely on the layer, the ex-

pression for the wave number k is more complicated, and since Eq. (4) for the dispersion relation is fourth-

order, there are four wave numbers for the four modes.

The boundary condition given by Eq. (10) is the mixed Dirichlet–Neumann boundary condition, and it

can be easily implemented into a finite-difference approximation algorithm determining the recursion re-

lations at z ¼ 0 for the tridiagonal solver.

At the right boundary z ¼ Lz, E ¼ 0. However, because the PML layer is implemented at the right

boundary to absorb the wave, there is no reflection from this boundary.
5. One-dimensional scalar equations for wave propagation in inhomogeneous isotropic plasmas

To illustrate how the PML technique may be used in the finite-difference implementation of wave

propagation equations, let us consider the 1D wave propagation in an isotropic plasma. This type of an

equation can occur in acoustics or in the theory of wave propagation of any type. In the particular case of a

wave incident normally on a layer of an inhomogeneous medium, the system of Eqs. (5)–(7) is reduced to
one parabolic equation for either Ex or Ey . In this case, the permittivity tensor e0ðx; zÞ has only diagonal

elements, as does the transformed permittivity tensor ~epml. Therefore, the equation for Ex in the general

form is the following:

o2Ex

oz2
þ x2

c2
1

 
�

x2
pe

x2
NðzÞ

!
Ex ¼ 0; ð11Þ

where NðzÞ is the given density profile. In the general case, the electron density can vary with time, and

therefore we shall find the solutions for the electromagnetic fields varying slowly on the time scale of the

density evolution. We present the electric field as Ex ¼ E1xe
�ix0t: Since we consider the ‘‘slow’’ wave

equations, the very fast time scales associated with the electromagnetic pump wave frequency x are re-

moved, and with this approximation one can write for the amplitude of the electromagnetic field
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o2Ex

ot2
¼ �2ix0

oE1x

ot
� x2

0E1x:

Thus by substituting x2 ¼ 2ix0
o
ot þ x2

0 into Eq. (11), the ‘‘slow’’ PML wave equation is written in the form

of the time-dependent linear Schr€odinger equation

o

ot

"
� i

c2

2x0

1

sz

o

oz
1

sz

o

oz

� �
� i

x0

2
1

 
�

x2
pe

x2
0

NðzÞ
!#

E1x ¼ 0: ð12Þ

Finally, with normalizations of the spatial variable z to the Airy length, z0 ¼ ðc2L=x2
0Þ

1=3
, and time t to

t0 ¼ 2x0z20=c
2, where L is the scale length of the density inhomogeneity, the dimensionless 1D PML

equation for wave propagation in an isotropic plasma is

o

ot

"
� i

1

sz

o

oz
1

sz

o

oz

� �
� i

L
z0

1

 
�

x2
pe

x2
0

NðzÞ
!#

E1x ¼ 0: ð13Þ

Eq. (13) is the model scalar Schr€odinger type PDE that can be approximated with the Crank–Nicholson

implicit finite-difference scheme. The application of this scheme results in the matrix equation

½T �fEg ¼ fDg;

where D contains the terms at the previous time step,

½T � ¼ tridiagonalfai; bi; cig

is the matrix of coefficients which depend on the particular finite difference approximation. For this specific

case with the use of the Crank–Nicholson finite-difference approximation and with complex stretched

variables, coefficients are defined as:

ai ¼ � �fi �fi�1

�
þ �fi

�
q;

ci ¼ � �fi �fiþ1

�
þ �fi

�
q;

bi ¼ �fi �fi�1

�
þ 2 �fi þ f

�
iþ1

�
q� 4i� 2

LDt

z0
1

 
�

x2
pe

x2
0

NðzÞ
!
;

ð14Þ

with q ¼ Dt=D
2
z , Dt the time step, Dz the grid spacing, and the absorbing complex function

�fi ¼
1

sz
¼ 1

1þ iczðzÞ
:

The von Neumann condition for stability of the FD scheme is j~gj6 1, where ~g is an amplification factor.

For the Crank–Nicholson FD approximation of the scalar Eq. (13) with czðzÞ ¼ 0, the amplification factor

is complex, and we must take into account the magnitude of the amplification factor in the complex plane,

j~gj ¼ j 1ð þ ið1=2ÞHÞ= 1ð � ið1=2ÞHÞj ¼ 1:

Here H is operator defined as ðHEÞi � qðd2EÞi þ DtViEi, Vi is variable coefficient. It follows that von

Neumann condition is always satisfied, so that the Crank–Nicholson method is unconditionally stable.

In the PML layer czðzÞ 6¼ 0. Assuming it to be a constant, the operator H is defined as ðHEÞi � qðð1�
c2Þ=ð1þ c2Þ2Þðd2EÞi � iqð2c=ð1þ c2Þ2Þðd2EÞi þ DtViEi. In this case, with d2E ¼ �4 sin2ð/=2ÞE (where / ¼
mzDz, mz is the wave number), simple algebra gives
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j~gj2 ¼ 1� 16cq sin2ð/=2Þ=ðð1þ c2Þ2 þ 8cq sin2ð/=2Þ þ 4q2 sin4ð/=2ÞÞ:

One can see that j~gj < 1 for c > 0 and thereby justify that the Crank–Nicholson scheme is stable.

To solve the tridiagonal system of linear equations arising from FD approximation, we use an efficient

algorithm that is referred to as the Thomas algorithm mentioned above [15–17].
6. One-dimensional vector equations for wave propagation in inhomogeneous magnetoactive plasmas

In the general case, when the wave is incident obliquely on the layer of a magnetized plasma, Eq. (3) is

the system of three second-order equations. Note that the electromagnetic fields vary slowly on the time

scale of the density evolution. Thus, the normalized system of the slow wave equations in 2D is the

following:

oEx

ot
¼ i

o2

oz2

�
þ i

L
z0
exx

�
Ex þ i

L
z0
exy

� �
Ey þ kx0

o

oz

�
� i

o2

oxoz
þ i

L
z0
exz

�
Ez; ð15Þ
oEy

ot
¼ i

L
z0
eyx

� �
Ex þ i

o2

ox2

�
þ i

o2

oz2
� ik2x0 þ i

L
z0
eyy

�
Ey þ i

L
z0
eyz

� �
Ez; ð16Þ
oEz

ot
¼ kx0

o

oz

�
� i

o2

oxoz
þ i

L
z0
ezx

�
Ex þ i

L
z0
ezy

� �
Ey þ i

o2

ox2

�
� ik2x0 þ i

L
z0
ezz

�
Ez: ð17Þ

Here, kx0 ¼
ffiffiffiffiffiffiffiffiffi
L=z0

p
p0 is a constant and the external magnetic field H 0 is at an angle a to the z-axis. For

normal incidence of the wave on the layer, kx0 ¼ 0, and the system of Eqs. (15)–(17) is simplified, becoming

two second-order equations. Besides, for longitudinal or transverse propagation when a ¼ 0� or a ¼ 90�,
two second-order equations separate into two independent second-order equations, and so in these par-

ticular cases, they can be solved similar to the isotropic case.

In the case of normal incidence (kx0 ¼ 0) for the 1D wave propagation in the z-direction, the Schr€odinger
type equations (15)–(17) are solved with the methods described in [16–18]. The finite-difference approxi-

mation is applied to each Eqs. (15)–(17), resulting in a block-tridiagonal matrix equation

~AjYj�1 þ ~CjYj þ ~BjYjþ1 ¼ Fj; j ¼ 1; 2; . . . ;N � 1; ð18Þ

where ~Cj is a square matrix of size ½Mj �Mj�, ~Aj is a rectangular matrix of size ½Mj �Mj�1�, ~Bj is a rectangular

matrix of size ½Mj �Mjþ1�, and Yj and Fj are vectors of the same orderMj. One then finds the solution of Eq.

(18) in the form

Yj ¼ �ajþ1Yjþ1 þ �bjþ1; j ¼ N � 1;N � 2; . . . ; 0; ð19Þ

where recursion �aj is a rectangular matrix of size ½Mj�1 �Mj� and recursion �bj is an Mj�1-dimensional vector

[18].
Matrices ~Aj, ~Bj, and ~Cj in (18) for Eqs. (15)–(17) are the following (for each spatial location j):

~A ¼
A11 0 0

0 A22 0

0 0 0

2
4

3
5; ~C ¼

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
4

3
5; ~B ¼

B11 0 0

0 B22 0

0 0 0

2
4

3
5:

The coefficients for the matrix elements for finite-difference approximation with PML are given in

Appendix A.
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For the oblique incidence case (kx0 6¼ 0), one can use a split-step algorithm, first solving the Schr€odinger
type Eqs. (15)–(17) without lower-order terms (the first derivative of the function). Secondly, the solutions

are to be found for the hyperbolic equations

oEx

ot
¼ kx0

oEz

oz
; ð20Þ
oEz

ot
¼ kx0

oEx

oz
: ð21Þ

Introducing the variables Eþ ¼ Ex þ Ez and E� ¼ Ex � Ez we obtain the equations for the Eþ and E�:

oEþ

ot
¼ þkx0

oEþ

oz
; ð22Þ
oE�

ot
¼ �kx0

oE�

oz
: ð23Þ

Eqs. (22) and (23) can be solved with the explicit method using upwind difference discretization, and

because of the waves absorbed in the PML layer during calculations in the previous step, we do not have to

solve Eqs. (22) and (23) in the PML layer. For an explicit method, we are required to choose the time step

satisfying the Courant–Friedrichs–Lewy stability condition

Dt 6
Dx

jvj :

Finally, the electric field components Ex and Ez are derived from Eþ and E�.

As to the boundary conditions for the general case of a magnetized plasma when the external magnetic

field is at an angle with the z-axis, they are similar to the ones discussed earlier for the isotropic case.

However, certain details should be taken into account. The equation for the left boundary arising from the
boundary condition (10) is used to obtain the starting values for recursive relation matrices �a1 and �b1 at

z ¼ 0 by comparing it with the

Ex

Ey

Ez

0
@

1
A

0

¼
a11 0 0

0 a22 0

0 0 a33

������
������
1

Ex

Ey

Ez

0
@

1
A

1

þ
b1

b2

b3

0
@

1
A

1

: ð24Þ

Note that the intensity of the incident radiation in the general case of a magnetized medium, when the
external magnetic field is at an angle with the z-axis, is determined by all three components of the electric

field vector, and so the amplitude of the upward going wave Eþ at the left boundary should be corrected

with the factor as follows:

Eþ ¼ Eþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jKj2 þ jBj2

q ; ð25Þ

where the coefficients K and B are sometimes called polarization coefficients [23] and they are found from

any of the two Eqs. (15)–(17):

K ¼ Ey

Ex
; B ¼ Ez

Ex
: ð26Þ

Also, one should note that the polarization coefficients would affect coefficients b2 and b3 in Eq. (24).
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Finally, at the right boundary we use the absorbing boundary conditions similar to the ones that were

used for the isotropic case.
7. Two-dimensional wave propagation in inhomogeneous magnetoactive plasmas

We have discussed the problem of the wave propagation in an isotropic medium (1D scalar equation)

and in the general case of an anisotropic medium (1D vector equations). In this section, we shall investigate

the reflection from the ionosphere with a more complicated 2D model of electron density, approximating

the density artificially created in ionospheric modification experiments.

For 1D scalar or vector equations, we solved the tridiagonal or block-tridiagonal systems of linear
equations arising from the implicit FD approximations. However in the two-dimensions, the penta-diag-

onal matrix occurs in the implicit FD approximations that cannot be efficiently solved with the above-

mentioned approach. Here, we consider the ADI methods to solve 2D Eqs. (15)–(17).

In the most common ADI approach, a variation of the Crank–Nicholson approximation is used, which

is efficient especially for rectangular computational domain. Here, we use the scheme based on the Douglas

high-order accurate method [28] which in two dimensions coincides with the Peaceman–Rachford method

[19]. First, we consider the McKee and Mitchell scheme [21] with mixed-derivative term. McKee and

Mitchell [21] approximated the parabolic equation with mixed derivative as straightforward Taylor
expansions of operators in a general two-level finite-difference formula.

To derive the scheme for the general case, let us consider the linear equation for the function Uðx; zÞ of
the two independent variables x and z. The finite-difference form of equation with mixed-derivative and

lower-order terms (first-order derivatives and zero-order term) is the following

Unþ1
i;j � Un

i;j ¼ rzcd
2
z

	
þ rxad

2
x þ r0zeHz þ r0xlHx þ rxzbHxHz þ rd



Un

i;j: ð27Þ

The derivative approximations are defined as following:

d2xU
n
i;j ¼ Un

iþ1;j � 2Un
i;j þ Un

i�1;j;

d2zU
n
i;j ¼ Un

i;jþ1 � 2Un
i;j þ Un

i;j�1;

HxUn
i;j ¼ Un

iþ1;j � Un
i�1;j;

HzUn
i;j ¼ Un

i;jþ1 � Un
i;j�1:

ð28Þ

Un
i;j is the solution of the difference equation at the grid point (or node) of the discretized domain. The nodal

coordinates are x ¼ iDx, z ¼ jDz, t ¼ ns with grid spacing Dx and Dz, and s is the time step. rx, rz, rxz, r0z, r
0
x, r

arise after finite-difference approximation and for Eqs. (15)–(17) they are

rx ¼
s

D2
x

; r0x ¼
s

2Dx
; rz ¼

s

D2
z

; r0z ¼
s

2Dz
; rxz ¼

s
4DxDz

; r ¼ s;

a ¼ c ¼ i, b ¼ �i, l ¼ 0, e ¼ kx0 are constants in the operators (second-order, mixed, and first-order

derivatives) in normalized Eqs. (15)–(17),

d ¼ i
L
z0
ei0j0 � ik2x0 ; i0; j0 ¼ x; y; zf g:

Following the prescription of McKee and Mitchell [21], Eq. (27) can be approximated with a general

two-level finite-difference formula. The difference operators at the advanced time level of scheme Unþ1
i;j can

be factorized with the appropriate choice of coefficients at the difference operators so that the scheme

becomes
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ð1
h

þ �Dd2x þ �BHxÞð1þ �Ed2z þ �CHzÞ
i
Unþ1

i;j ¼ ð1
�

þ D
þ
d2x þ B

þ
HxÞð1þ E

þ
d2z þ C

þ
HzÞ þ rxzbHxHz þ rd

�
Un

i;j:

ð29Þ

The scheme (29) is capable of factorization by setting �D, �B, �E, �C, D
þ
, B

þ
, E

þ
, and C

þ
as following:

D
�
¼ 1

f
� 1

2
rxa; B

�
¼ 1

f
� 1

2
r0xl;

E
�
¼ 1

f
� 1

2
rzc; C

�
¼ 1

f
� 1

2
r0ze;

ð30Þ

where f is an adjustable parameter.

In general, the scheme (29) can be split in the Douglas–Rachford form to yield

1

��
þ 1

f

�
� 1

2
rzc
�
d2z þ

1

f

�
� 1

2
r0ze
�
Hz

��
Unþ1�

i;j

¼ 1

��
þ 1

f

�
þ 1

2
rzc
�
d2z þ

1

f

�
þ 1

2
r0ze
�
Hz

�
þ rxzbHxHz þ rd þ rzcd

2
x

�
þ r0zeHx

�
þ 1

f
d2z
��

þ Hz

�
rxad

2
x

�
þ r0xlHx

�
þ d2x
�

þ Hx

�
rzcd

2
x

�
þ r0zeHx

���
Un

i;j; ð31Þ
1

��
þ 1

f

�
� 1

2
rxa
�
d2x þ

1

f

�
� 1

2
r0xl
�
Hx

��
Unþ1

i;j ¼ Unþ1�

i;j þ 1

f

��
� 1

2
rxa
�
d2x þ

1

f

�
� 1

2
r0xl
�
Hx

�
Un

i;j:

ð32Þ

In the case, when e ¼ l ¼ d ¼ 0, the scheme (31) and (32) coincides with the McKee and Mitchell scheme
[21]. Also, this is the Peaceman–Rachford scheme when f ¼ 1 [19], and the high-accuracy Mitchell–

Fairweather scheme when f ¼ 12 [29]. One can see that Eqs. (31) and (32) involve the solution of two sets of

tridiagonal equations at each time step in the z-direction and then x-direction subsequently. One should

note that the boundary conditions should be specified at the intermediate level of scheme (31); however, in

general, the method can lose accuracy if the boundary conditions are time-dependent. This difficulty may be

overcome by reorganizing the computational procedure [22].

We now investigate the stability condition for the general scalar scheme (29). For a two level scalar FD

scheme (29), the von Neumann condition is sufficient as well as necessary for stability. The amplification
factor (for the scheme without lower-order terms) is complex and the magnitude of the amplification factor

is given by

j~gj2 ¼ 1þ ~rxz sinð/Þ sinðwÞ

� ð~rxz sinð/Þ sinðwÞ � 4rðsin2ð/=2Þ þ sin2ðw=2ÞÞ þ 32 ~f r sin2ð/=2Þ sin2ðw=2ÞÞ
ðð1� 4 ~f sin2ð/=2ÞÞ2 þ 4r2 sin4ð/=2ÞÞðð1� 4 ~f sin2ðw=2ÞÞ2 þ 4r2 sin4ðw=2ÞÞ

; ð33Þ

where / ¼ mxD and w ¼ mzD, mx and mz are wave numbers that can be chosen arbitrarily. Here, ~rxz ¼ 4rxz,
rx ¼ rz ¼ r, Dx ¼ Dz ¼ D, and ~f ¼ 1=f . It is obvious, that the amplification factor is unity when mixed-
derivative term is not taken into account (~rxz ¼ 0). The presence of this term implies that additional con-

ditions must be imposed j/j6p, jwj6p in order for the j~gj < 1. Provided these conditions are satisfied, one

can find the restriction for the value of parameter f .
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Now let us turn to the solution of the vector equations. The stability analysis of the scheme (29) for the

vector case is more complicated. However, for the scalar case considered above, the stability analysis shows

that the presence of mixed-derivative term implies additional conditions for stability. In our case, we shall
apply a split-step method to solve first Eqs. (15)–(17) without mixed-derivative term which can be solved on

the second step.

Once again, similar to the 1D case of the wave propagation in a magnetized medium, the matrices of

coefficients would arise in solving the difference equations. Here we consider the general scheme (29) for the

normal incidence case (kx0 ¼ 0) without mixed-derivative term and with f ¼ 1. Thus, we have

1

��
� 1

2
rxad

2
x

��
Unþ1� ¼ 1

��
þ 1

2
rxad

2
x

�
þ ðrzcd2z þ rdÞ

�
Un

i;j; ð34Þ
1

��
� 1

2
rzcd

2
z �

1

2
rd
��

Unþ1
i;j ¼ Unþ1�

i;j � 1

2
rzcd

2
z

�
þ 1

2
rd
�
Un

i;j: ð35Þ

In order to avoid the problem with boundary conditions at the intermediate level, we split scheme (29)

first in the x-direction (n – horizontal) and then in the z (f – vertical) direction. The finite-difference Eqs. (34)
and (35) are solved with block-tridiagonal methods. But unlike the 1D case we have two sets of matrix

coefficients f ~An; ~Cn; ~Bng and f ~Af; ~Cf; ~Bfg with the components Ani0j0 , Cni0j0 , Bni0j0 and Afi0j0 , Cfi0j0 , Bfi0j0 ði0; j0 ¼
fx; y; zgÞ, which arise when the numerical scheme (34) and (35) is applied to Eqs. (15)–(17). Matrix coef-

ficients in the first set, corresponding to the splitting in the n horizontal direction, have only diagonal
elements, and coefficients in the second set correspond to the splitting in the f vertical direction (see

Appendix B).

The split forms (34) and (35) coincide with the Douglas [20] forms in the case of the scalar equations.

Now one must specify a boundary value at the end of each line (Eqs. (34) and (35)) being solved via tri-

diagonal methods. Since the wave is incident at the lower boundary of the rectangular computational

domain, only the lower boundary condition has a physical meaning, so that the boundary condition is

applied in the form similar to Eq. (10). At the top boundary, an absorbing boundary condition is applied

using the PML technique described above for the 1D case. The right and left boundaries are also absorbing
boundaries so that the numerical solution decays exponentially toward these boundaries, and no reflection

is allowed.

Finally, on the second step of solving of Eqs. (15)–(17), the mixed-derivative terms are solved. Similar to

the 1D case with lower-order derivatives terms we consider the two equations for Eþ and E� denoted by

Eþ ¼ Ex þ Ez and E� ¼ Ex � Ez:

oEþ

ot
¼ �i

o2Eþ

oxoz
; ð36Þ
oE�

ot
¼ þi

o2E�

oxoz
: ð37Þ

We use a predictor–corrector type of the method to solve Eqs. (36) and (37) (see Appendix C). Here the

mixed-derivative terms are usually treated explicitly. The amplification factor for this scheme is

j~gj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
q2 sin2ð/Þ sin2ðwÞ

� �2

þ q2 sin2ð/Þ sin2ðwÞ

s

and it can be presented as
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j~gj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

t f1ð/;wÞ þ D4
t f2ð/;wÞ

q
;

where functions f1ð/;wÞ and f1ð/;wÞ are bounded. If m1 and m2 are maximum values of jf1ð/;wÞj and
jf2ð/;wÞj with varying / and w, then we have

j~gj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m1D

2
t þ m2D

4
t

q
¼ 1þOðDtÞ2:

Thus this stability condition does not impose additional restriction on time step satisfying the stability

condition of the scheme for hyperbolic model equations (kx0 6¼ 0).
8. One-dimensional simulation results

In this section, we shall consider numerical examples for 1D propagation of the full-wave in an inho-

mogeneous isotropic and magnetized media. The results of calculations demonstrate the standing wave

patterns of a HF radio wave totally or partially reflected from the ionosphere and the application of the

PML technique for the open-domain problem.

For the case of 1D propagation in an isotropic medium and normal incidence of the wave, the wave

equation (13) is solved either for Ex or Ey , and the Ez component is zero. First, we consider wave propa-
gation in a uniform density so that there is no reflection point. In this case, the wave should propagate up to

the right boundary and then escape to infinity. Therefore, the PML absorbing boundary condition is re-

quired at the right boundary. However, in the absence of PML, there is a strong reflection when the Di-

richlet condition is applied at the right boundary as one can see in Fig. 1. In Fig. 2, we represent the results

of simulations with PML boundary conditions, which demonstrate that the energy of the incident wave

with unit amplitude is absorbed inside the PML region and no reflection occurs from the right boundary.

The wave amplitude of unity for the wave outside the PML region is unchanged.

In the PML implementation, one must construct the PML layer with the finite thickness and choose the
damping function cðzÞ, which is nonzero only inside the PML region. In the work of Collino [11], the

thickness of the PML layer was optimized in order to minimize the reflection coefficient from the boundary.

In that study of the paraxial wave equation, the dependence of the reflection coefficients on the number of

the points per wavelength was investigated. The number of the points per wavelength was considered from

5 to 40 and it was found that it is the order of magnitude of the absorbing function that is mainly important

[11]. The choice of the function cðzÞ can be arbitrary and for our problems we use a function in a form of a

geometrical progression [10]
Fig. 1. The electric field amplitude (the reflecting right boundary).



Fig. 2. The electric field amplitude (the PML absorbing right boundary).
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cðzÞ ¼ c0ðg1=DzÞz; ð38Þ

where Dz is the vertical resolution of the grid. The length of the PML layer used in Fig. 2 is about 1.2

wavelengths (32 grid points) with 26 grid points per wavelength, and Dz ¼ 60=512 ¼ 0:117. To quantify the
results, we calculate the standard deviation from the amplitude of the incident wave (unity). For the

maximum value of the damping function maxðcðzÞÞ ¼ 11:4, the standard deviation was about 0.13%. For

the calculation with the 18 points per wavelength and similar profile of the absorbing function (the 32

points PML layer) with a maximum of 22.8, the deviation was about 0.185%. We also performed the

calculations for the case when a 10 point PML layer was constructed from the values of the coefficients

given by Collino [11]. These coefficients were optimized in order to minimize the reflection induced by the

boundary for 5 points per wavelength Collino [11, Table 3]. With these coefficients, the standard deviations

were 0.75% and 0.62% for the calculations with 26 and 18 points per wavelength, respectively. For the case
with less than 5 points per wavelength, the deviation was 1.73%, and it dropped to 1.63% when the am-

plitude of the coefficients was adjusted so that the maximum value of the coefficients was about 5.022. For

the same case with 5 points per wavelength calculation, the PML layer with 5 optimized coefficients from

Collino [11, Table 3] was used, which resulted in a standard deviation of 2.73%. These simulations show

that the length of the PML layer should be at least comparable to one wavelength, and beyond a small

number of points per wavelength, the accuracy does not improve. However, better results can be achieved

when the length of the PML layer is about two wavelengths.

In Fig. 3(a), the electric field pattern is shown for a narrow density layer (Fig. 3(b)). Even though the
peak density is overdense, there is only partial reflection from the density layer because the thickness of the
Fig. 3. (a) The amplitude of the electric field as a function of altitude for the case of an unmagnetized plasma with (b) the narrow

electron density layer (the peak density is overdense).
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density layer is smaller than one wavelength. One can see that after reflection the wave propagates further

and is then absorbed in the 32 point PML layer.

We now investigate the solutions of the differential Eqs. (15)–(17) for the linear electron density profile,
NðzÞ ¼ 1þ ðz� zcÞ=L; where L is the density inhomogeneity and zc is the critical surface where the local

plasma frequency matches the given wave frequency. We use the sets of parameters for the F and E regions

at Tromsø given by Lundborg and Thide [30]. They used analytical formulae [31] for calculating the wave

pattern of a HF radio wave incident vertically into the ionosphere without taking into account the coupling

between the ordinary and extraordinary modes that can occur around the reflection regions for the cases

when the angle a between magnetic field and vertical is large enough to exclude the conversion of the

ordinary mode O to the Z-mode.

In Figs. 4(a)–(c), we show the results of simulations for the parameters of the F region at Tromsø. Here
x ¼ 2p � 5:423 MHz, the electron cyclotron frequency xe ¼ 2p � 1:3 MHz, L¼ 50 km, angle a ¼ 13�. In
Fig. 4(a), we present the real parts of the refractive index function n2O;X (the solution of the dispersion Eq.

(4)) for the O-mode (filled circle curve) and X -mode (filled-diamond curve). The O-mode refractive index

has a zero (vertical solid curve in Fig. 4(a)) at V ¼ 1, where V ¼ x2
pe=x

2, xpe is electron plasma frequency.

The reflection points for the X -mode are at V ¼ 1� Y , where Y ¼ xe=x. The refractive index of the

X -mode n2X goes to infinity at

V ¼ 1� U
1� U cos2 a

; U ¼ Y 2: ð39Þ
Fig. 4. (a) The refractive index function nO;X (linear density profile, the F region at Tromsø); electric field amplitudes (b) jEzj, jEy j, and
for the isotropic case jE0j; (c) jExj and jEy j.
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The distance between the reflection point of the ordinary wave and the resonance of the X wave is about

151 m and the modes are separated. In Fig. 4(b), we show the jEzj and jEy j components of the electric field

(solid and dashed lines) and also for the isotropic case, the electric field jE0j (dash-dotted curve). In
Fig. 4(c), we show the jExj (solid line) and jEy j (dashed line) components of the electric field. Note that in

this calculation the O-mode was incident normally at the left boundary with unit amplitude and the right

boundary was the absorbing boundary approximated with a 10 point PML with the maximum of the

damping function maxðcðzÞÞ¼ 15.1. For this case, the choice of the PML layer is not that important since

the wave is almost completely reflected at V ¼ 1. The spatial grid size Dz for the calculations in Figs. 4(b)–

(c) was about 0.05.

The results of our calculations for the set of parameters for the E region of Tromsø are shown in Figs.

5(a)–(c). The corresponding parameters for the E layer were xe ¼ 2p � 1:4 MHz, L¼ 5 km, x ¼ 2p � 3:515
MHz, a ¼ 13�. The behavior of the refractive index in Fig. 5(a) is similar to the one in Fig. 4(a) but the

resonance layer now is very close to the reflection height of the O-mode (they are separated by about 47 m).

There is only partial reflection of the ordinary wave at V 	 1. The wave is partly transmitted as a second

branch of the extraordinary wave, which can propagate for V P VX1 (VX1 is the resonance layer (39)).

Therefore even at normal incidence in the magnetic field, the plasma wave can be excited in the neigh-

borhood of the VX1 . This is demonstrated in Fig. 5(b), where there is a sharp increase in the amplitude of the

jEzj component (solid line) prior to the reflection layer of the ordinary mode. However, electrostatic waves

are not described within a cold plasma model. In this case, the inclusion of electron collisions is the only
Fig. 5. (a) The refractive index function nO;X (linear density profile, the E region at Tromsø); electric field amplitudes (b) jEzj, jEy j, and
for the isotropic case jE0j; (c) jExj and jEy j.
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mechanism to resolve the singularity that occurs when the wave approaches the plasma resonance. Here, we

used m ¼ 103 s�1. The resolution in space for these calculations was about 87 cm per grid size. The nor-

malization of the incident wave was the same as in the previous case and the right absorbing boundary was
approximated with about 1.5 wavelength PML in the form of (38) and maxðcðzÞÞ ¼ 30:77.

Here, we investigate the wave propagation for a model of a sporadic E layer at Tromsø, which is ap-

proximated with the parabolic model for the electron density, NðzÞ ¼ x2
cr=x

2½1� ðz� zcÞ2=L2�; where L is

the half-thickness of the layer, zc is the height of the density peak, the critical frequency xcr is the maximum

plasma frequency of the profile, and xcr ¼ x [30]. The peak density is about Nmax ¼ 1:53� 105 cm�3. The

corresponding parameters are xe ¼ 2p � 1:3 MHz, L¼ 1 km, x ¼ 2p � 3:515 MHz, m ¼ 104 s�1, and a ¼ 13�.
The real part of refractive index function n2O;X is shown in Fig. 6(a). There are two reflection points for the

O-mode (solid vertical lines in Fig. 6(a)), and they are very close to the poles of the X -mode (dashed vertical
lines). In Fig. 6(b) we show the jEzj and jEy j components of the electric field (solid and dashed lines) and

also for the isotropic case, the electric field jE0j (dash-dotted curve). In Fig. 6(c), the jExj (solid line) and jEy j
(dashed line) electric field components are shown.

In this case, the O-mode is partially reflected and directly converted into the electrostatic mode. The O-
mode penetrates further than the layer V ¼ 1 and continues in the Z-mode. However, the peak density is

too low for the Z-mode to be reflected at the layer V ¼ 1þ Y (the Z-mode critical density is about 2:1� 105

cm�3). Thus the Z wave penetrates through the layer that results in the reflection above the density peak

height at z ’ 0:76 km, and the resonance at z ’0.78 km (the second spike in Fig. 6(b)).
Also, one can see that the amplitude of the electric field jEzj is very high when compared to the electric

field for the isotropic case (Fig. 6(b)). The grid size for this calculation was Dz ¼ 0:047 and the length of the

PML boundary layer was about one wavelength (80 m or 30 points) with maxðcðzÞÞ ¼ 28:8.
Fig. 6. (a) The refractive index function n2O;X (parabolic density profile, the E region at Tromsø); electric field amplitudes (b) jEzj, jEy j,
and for the isotropic case jE0j; (c) jExj, jEy j.
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9. Two-dimensional simulation results

For the 2D simulations of the wave propagation in a density with the overdense blobs in the E layer at
Arecibo, we use a model of a 2D electron density profile to approximate the electron density patch asso-

ciated with the sporadic-E layer [4]. Here, we consider the 2D density profile (shown in Fig. 7)

Nðx; zÞ ¼ N0½1þ ~Nmax expð�ðx� xcÞ2=L2
x � ðz� zcÞ2=L2

z Þ� with the characteristic height in the z-direction
Lz ¼ 0.25 km and characteristic width in the x-direction Lx ¼ 2 km. zc and xc are the height and the width of

the patch center. N0 ¼ 0:2� 105 cm�3 and the peak density is 2:2� 105 cm�3.

The parameter values used in these calculations are typical for the E region at Arecibo [4]. They are the

wave frequency x ¼ 2p � 3:175 MHz, a ¼ 42�, the effective electron collision frequency m ¼ 7:387� 103 s�1,

and the electron cyclotron frequency xe ¼ 2p � 1:1 MHz. In the experiment, an ordinary mode electro-
magnetic wave is generated and beamed upward. Usually, the beam passes through the E region because

the densities are too low and local plasma frequency cannot match the incident wave frequency. However,
Fig. 7. The 2D electron density profile for the sporadic E region patch at Arecibo.

Fig. 8. The contours of field amplitudes (a) the total electric field jEj, the components of the electric field (b) jEzj, and (c) jExj with the

right and the left side Dirichlet boundary conditions. The angle a ¼ 42�.
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because the overdense patch represented by 2D density profile is in the path of the HF beam, the wave is

reflected.

The calculation domain of 516 points in the x and the z-directions was considered. The grid steps Dx ¼ 15
m and Dz ¼ 4:5 m so that there are about 6 and 21 points per wavelength in the x and z-directions, re-
spectively. For the calculations in Figs. 9 and 10, the resolution in z-direction was increased, so that

Dz ¼ 2:25 m. In Figs. 8(a)–(c), we display the contours of the total electric field amplitude jEj with jEzj and
jExj components. Here, the Dirichlet boundary conditions were applied at the right and the left sides of the

computational domain. The wave with the amplitude normalized to unity was incident at the lower

boundary of the domain, and the top boundary was approximated with about a 1.5 wavelengths PML

layer. Although the wave was incident vertically, one would expect some reflection from the right and the

left boundaries because of the 2D electron density profile. Indeed, one can see strong reflection from the left
side (the asymmetry arises due to finite angle a) in Figs. 8(a) and (b). This reflection affects propagation in
Fig. 9. The contours of electric field amplitudes (a) jEj, (b) jEzj, and (c) jExj with the right and the left side PML boundary conditions.

The angle a ¼ 42�.

Fig. 10. The contours of electric field amplitudes (a) jEj, (b) jEzj, and (c) jExj with the right and the left side PML boundary conditions.

The angle a ¼ 0�.



Fig. 11. The contours of electric field amplitudes (a) jEj, (b) jEzj, and (c) jExj with the right and the left side Dirichlet boundary

conditions. The angle a ¼ 0�.
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the z-direction so that the PML boundary at the top cannot absorb the wave (seen more clearly in Fig. 8(c)).

Here, there was no steady-state solution and the run was eventually ruined.

In order to avoid reflections from the boundaries one should construct the absorbing layers at the right

and the left sides of the domain. In Figs. 9(a)–(c), we demonstrate the 2D standing wave patterns for the

amplitudes of jEj, jEzj, and jExj. There are no visible reflections from the top boundary and from the right

and the left side boundaries as well. The length of the horizontal PML layers was about 10 points that is less
than two wavelengths. One can see that in the regions of about one kilometer from both sides, the waves

propagate vertically, and the amplitude of the total electric field (Fig. 9(a)) is unity.

In Figs. 10(a)–(c), similar calculation experiments were performed for the case when the angle a ¼ 0 for

the 2D density profile shown in Fig. 7. The same PML layers were used at the boundaries. As the result, we

can see symmetric standing wave patterns with the maximal amplitudes at z ¼ 0:74 km that is the region of

first reflection of the O-mode and near x ¼ bx=2, where bx is the size of the computational box profile in the

x-direction (Figs. 10(a)–(b)). Note that for normal incidence when a ¼ 0, the amplitude of the jEzj 6¼ 0

because of density inhomogeneity, although it is smaller than that for the case when a 6¼ 0. However, at
x ¼ bx=2 
 4 km, the amplitude of the jEzj is almost zero and only the jExj 6¼ 0 (because the O-mode and the

X -mode are uncoupled). In order to demonstrate the effect of PML boundaries in the x-direction, similar to

the case of finite angle a, we turn off the PML boundaries by simply setting function cðxÞ ¼ 0 in the PML

layer of the computation domain. The results of calculations are shown in Figs. 11(a)–(c). One can see the

waves are reflected from the right and the left boundaries symmetrically. However, after a while the re-

flections from the boundaries affect the propagation in all directions resulting in the increase of the am-

plitude of the wave at the boundaries, and eventually completely ruining the pattern of the fields.
10. Conclusions

We have presented the 1D and 2D numerical models for the propagation of HF radio waves in inho-

mogeneous magnetized plasmas. The models are utilized for simulating the propagation of the waves that

are totally or partially reflected from the ionosphere. The simulations allow one to describe the process of

linear conversion of electromagnetic waves into electrostatic waves when the ordinary waves are normally

(or obliquely) incident from the lower boundary (in 2D case). The models take into account the geo-
magnetic field and collisions. The standing wave patterns for the components of the full 3D wave at the

reflection and resonant regions are calculated.
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The numerical schemes for solving 2D wave propagation time-dependent equations and 1D vector and

scalar equations as their limits, are derived. The model employed the Maxwellian PML technique for

approximating nonreflecting arbitrary boundary conditions. The Maxwellian PML technique is very
convenient for realization and can be applied to various numerical models. We have demonstrated the

effectiveness of the PML technique for transparent boundary conditions for an open-domain problem with

1D and 2D numerical examples.
Appendix A. Matrix coefficients for block-tridiagonal solver with PML for 1D vector equation

The coefficients for matrices ~Aj, ~Cj, ~Bj in (18) for Eqs. (15)–(17) (for each spatial location j) are the

following:
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s
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where s is the time step, Dz is the grid spacing in the z-direction, the Airy length z0 ¼ ðc2L=x2Þ1=3 is the

normalization parameter for the independent variable z, and L is the scalelength of the density inhomo-

geneity.
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�
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�
; g
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�
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�
;
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�
zj ¼ gzj�1

�
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�
;
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¼ 1

1þ icz zð Þ

ðA:2Þ

is the absorbing function which depends on z.
Appendix B. Matrix coefficients for block-tridiagonal solver with PML for 2D vector equation

Matrix coefficients for each spatial location i in the horizontal direction n:
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and

gni ¼
1

sx
¼ 1

1þ icx xð Þ

is the absorbing function which depends on x.
Matrices of the coefficients in the second set correspond to the splitting in the vertical direction f (for

each spatial location j):
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where �gfj ; g
þ
fj ; g

�
fj are determined similar to (B.2) and

gfj ¼
1
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¼ 1

1þ icz zð Þ

is the absorbing function which depends on z.
Appendix C. Two-step method for solving equations with mixed-derivative terms

Eqs. (36) and (37) are solved with a two-step method when the value of the function at nþ 1 step

depends on the values at the previous n step and intermediate one. In the first step we calculate the
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intermediate values for E�
þ and E�

� using explicit finite difference approximations. This is so called the

predictor step. In the next step, the corrector step, using predicted values E�
þ and E�

� and ‘‘old’’ values En
þ

and En
�, the final values for the functions at nþ 1 step are obtained:
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where the finite difference approximation of mixed derivative

HxyEn
i;j ¼ En

iþ1;jþ1 � En
i�1;jþ1 � En

iþ1;j�1 þ En
i�1;j�1:
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